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1. Introduction and General Status

The main goals of the research under this grant consist of the development of

mathematical tools and measurement of transport properties necessary for high fidelity modelling

of crystal growth from the melt and solution, in particular for the Bridgman-Stockbarger growth

of mercury cadmium telluride (MCT) and the solution growth of triglycine sulphate (TGS). Of

the tasks described in detail in the original proposal, two remain to be worked on:

- development of a spectral code for moving boundary problems,

- diffusivity measurements on concentrated and supersaturated TGS solutions.

During this eighth half-year period, good progress has been made on these tasks.

2. MCT Code development

During the last six monthly period we have completed a paper on a Chebyshev

pseudospectral collocation method is adapted to the problem of directional solidification.

Implementation of this method involves a solution algorithm that combines domain

decomposition, a finite-difference preconditioned conjugate minimum residual (PCMR) method

and a Picard type iterative scheme. The method solves equations which describe heat transfer in

the ampoule, melt and crystal, and the convective flow problem in the melt. The crystal-melt

interface shape is determined as part of the solution. A pre-print of the paper is attached in the

appendix. '

In addition we have successfully completed an extension of this code to include species

transport and the dependence of crystal melting temperature on composition. The method

employs a conjugate-gradient-squared (CGS) technique for the species and heat transport

equations, and a PCMR method for the momentum equations and involves finite-difference

preconditioning. The code has been tested extensively against results of Kim and Brown [ 1] and

Adornato and Brown [2] for the directional solidification of mercury cadmium telluride, gallium-

doped germanium and silicon-germanium. Further work, beyond the tests, has involved the

study of the interplay between convective flow, interface shape and compositional uniformity.

These results will be reported in full in the next report.

[1]

[2]

D.H. Kim and R.A. Brown, "Models for convection and segregation in the growth of

HgCdTe by the vertical Bridgman method", J. Crystal Growth, 96, 609-627 (1989).

P. M. Adornato and R. A. Brown, "Convection and segregation in directional

solidification of dilute and non-dilute binary alloys", J. Crystal Growth, 80, 155-190

(1987).
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3. Diffusivity Measurements

Work on this topic has concentrated during the last six months on the accuracy of the

novel diffusivity measurement technique developed under this grant. This was triggered by our

discovery of poor reproducibility between runs. Two error sources were identified:

The standard microscope slides used as windows in the diffusion cell, inspite of

background interferogram subtraction, turned out to be optically inadequate to fully utilize the

advantages of this technique. Hence, we have acquired optical windows fiat to within 1/10th of a

wavelength of the He-Ne line used in the interferometry. This has led to a significant reduction

of the experimental errors.

In addition to the experimental error, we discovered that the mathematical approach taken

in the evaluation of the interferometric data, can introduce larger errors than we expected earlier.

Both the ZAPP-PC software used, as well as the specific function used in evaluating the integral

equation used in our approach (see earlier reports) have been identified as significant error

sources. Current work is concentrating on developing a more advantageous algorithm for data

evaluation

4. Presentations and Publications

From the work carried out under this grant the following papers have been published,

accepted for publication or are in preparation for submission for publication:

°

.

,

.

.

.

.

A. Nadarajah, F. Rosenberger and J. I. D. Alexander, Modelling the Solution Growth of

TrigIycine Sulfate in Low Gravity, J. Crystal Growth 104 (1990) 218-232.

F. Rosenberger, J. I. D. Alexander, A. Nadarajah and J. Ouazzani, Influence of Residual

Gravity on Crystal Growth Processes, Microgravity Sci. Technol. 3 (1990) 162-164.

J. P. Pulicani and J. Ouazzani, A Fourier-Chebyshev Pseudo-Spectral Method for Solving

Steady 3-D Navier-Stokes and Heat Equations in Cylindrical Cavities, Computers and

Fluids 20 (1991) 93.

J. P. Pulicani, S. Krukowski, J. I. D. Alexander, J. Ouazzani and F. Rosenberger,

Convection in an Asymmetrically Heated Cylinder, Int. J. Heat Mass Transfer 35 (192)

2119.

F. Rosenberger, J. I. D. Alexander and W.-Q. Jin, Gravimetric Capillary Method for

Kinematic Viscosity Measurements, Rev. Sci. Instr. 63 (192) 269.

A. Nadarajah, F. Rosenberger and T. Nyce, lnte_erometric Technique for Diffusivity

Measurements in (Supersaturated) Solutions, J. Phys. Chem (submitted).

F. Rosenberger, Boundary Layers in Crystal Growth, Facts and Fancy, in Lectures on

Crystal Growth, ed. by H. Komatsu (in print).
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.

.

F. Rosenberger, Short-duration Low-gravity Experiments - Time Scales, Challenges and

Results, Microgravity Sci. Applic. (in print).

Y. Zhang, J.I.D. Alexander and J. Ouazzani, A Chebishev Collocation Method For

Moving Boundaries, Heat Transfer and Convection During Directional Solidification,

Internat. J. Numerical Methods Heat Fluid Flow (submitted).

In addition to the above publications, the results of our work have been presented at the

following conferences and institutions:

.

*

J.I.D. Alexander, Modelling the Solution Growth of TGS Crystals in Low GraviO,,

Committee on Space Research (COSPAR) Plenary Meeting, The Hague, Netherlands,

June 26 - July 6, 1990.

A. Nadarajah, Modelling the Solution Growth of TGS Crystals in Low Gravity, Eighth

American Conference on Crystal Growth, Vail, Colorado, July 15-21, 1990.

.

.

.

.

.

.

.

10.

J.I.D. Alexander, Commercial Numerical Codes." To Use or Not to Use, Is This The

Question?, Microgravity Fluids Workshop, Westlake Holiday Inn, Cleveland Ohio,

August 7-9, 1990.

F. Rosenberger, Fluid Transport in Materials Processin, Microgravity Fluids Workshop,

Westlake Holiday Inn, Cleveland Ohio, August 7-9, 1990.

F. Rosenberger, Influence of Residual Gravity on Crystal Growth Processes, First

International Microgravity Congress, Bremen, September 1990 (invited).

J.I.D. Alexander, Residual Acceleration Effects on Low Gravity Experiments, Institute de

Mechaniques des Fluides de Marseilles, Universit6 de Aix-Marseille III, Marseille,

France, January 1991, (3-lecture series, invited).

J.I.D. Alexander, An Analysis of the Low Gravity Sensitivity of the Bridgman-Stockbarger

Technique, Department of Mechanical Engineering at Clarkson University, April 1991

(invited).

A. Nadarajah, Measuring Diffusion Coefficients of Concentrated Solutions, Fifth Annual

Alabama Materials Research Conference, Birmingham September 1991.

A. Nadarajah, Modelling Crystal Growth Under Low Gravity, Annual Technical Meeting

of the Society of Engineering Science, Gainesville, November 1991.

J.I.D. Alexander, Vibrational Convection and Transport Under LOw Gravity Conditions,

Society of Engineering Science 28th Annual Technical Meeting, Gainesville, Florida,

November 6-7, 1991.



" 4

11.

12.

13.

14.

15.

16.

17.

18.

19.

F. Rosenberger,Theoretical Review of Crystal Growth in Space - Motivation and Results,

International Symposium on High Tech Materials, Nagoya, Japan, November 6-9, 1991

(plenary lecture, invited).

F. Rosenberger, Computer Simulation in Materials Science, Mitsubishi Frontiers

Research Institute, Tokyo, Japan, November 8, 1991 (invited).

F. Rosenberger, Importance of Materials Research in Space Laboratories for Industrial

Development, International Symposium for Promoting Applications and Capabilities of

the Space Environment, Tokyo, Japan, November 14-15, 1991 (plenary lecture, invited).

F. Rosenberger, What Can One Learn from 10 Second Low-Gravity Experiments?, In

Space 1991, Tokyo, Japan, November 14-15, 1991 (plenary lecture invited).

P. Larroude, J. Ouazzani and J.I.D. Alexander, Flow Transitions in a 2D Directional

Solidification Model, 6th Materials Science Symposium, European Space Agency,

Brussels, Belgium, 1992 (poster).

F. Rosenberger, Microgravity Materials Processing and Fluid Transport, AIAA Course

on Low-Gravity Fluid Dynamics, AIAA Meeting, Reno, NV, January 10-12, 1992 (3-

lecture series, invited).

J.I.D Alexander, Numerical Simulation of Low-g Fluid Transport, AIAA Course on Low-

Gravity Fluid Mechanics, Reno, NV, January 10-12, 1992 (invit+d).

F. Rosenberger, Time Scales in Transport Processes and Challenges for Short-Duration

Low-Gravity Experiments, Falltower Days Bremen, Bremen, Germany, June 1-3, 1992

(invited).

J.I.D. Alexander, Modelling or Muddling? Analysis of Buoyancy Effects on Transport

under Low Gravity Conditions, World Space Congress, Washington, DC, August 28 -

September 5, 1992 (invited lecture).



A CHEBYSHEV

BOUNDARIES,

DURING

COLLOCATION METHOD FOR MOVING

HEAT TRANSFER, AND CONVECTION

DIRECTIONAL SOLIDIFICATION

Yiqiang Zhang, J. Iwan D. Alexander and Jalil Ouazzani*

Center for Micogravity and Materials Research, University of Alabama in Huntsville

Abstract

Free and Moving Boundary problems require the simultaneous solution of unknown field variables

and the boundaries of the domains on which these variables are defined. There are many

technologically important processes that lead to moving boundary problems associated with fluid

surfaces and solid-fluid boundaries. These include crystal growth, metal alloy and glass

solidification, melting and flame propagation. The directional solidification of semi-conductor

crystals by the Bridgman-Stockbarger method 1,2 is a typical example of a such a complex process.

A numerical model of this growth method must solve the appropriate heat mass and momentum

transfer equations and detemine the location of the melt-solid interface. In this work, a Chebyshev

pseudospectral collocation method is adapted to the problem of directional solidification.

Implementation of the method involves a solution algorithm that combines domain decomposition,

a finite-difference preconditioned conjugate minimum residual method and a Picard type iterative

scheme.

* Presently at the Institute de M6canique des Fluides de Marseille, 1 rue Honnorat, Marseille, Francc.
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1. INTRODUCTION

Moving and free boundary problems are problems that require as part of the solution the

determination of some or all the boundaries of the domain under consideration. Included in this

class of problems are situations that involve fluid surfaces, or solid-fluid interfaces. Freezing and

melting, crystal growth, flame propagation, liquid surface configurations, are examples of such

processes that are important in a variety of areas with technological applications. Such problems

generally pose a challenging problem to the numerical modeller. The Bridgman-Stockbarger

directional solidification crystal growth technique is a typical example of such a complex problem.

To adequately represent the physics of the problem, the solution method must be able to cope with

the following: The unknown location of the crystal-melt interface, high Rayleigh number

buoyancy-driven flows, heat transfer by conduction (along ampoule walls and in the crystal),

convective-diffusive heat transfer in the melt and radiative and convective heat transfer between the

furnace and the ampoule. Even for pure melts, due to differences in thermal conductivities between

melt, crystal and ampoule, and the differences in thermal and momentum diffusivities in the melt,

the problem has a variety of disparate length scales over which characteristic features must be

accurately represented.

In past work 3-11, the Finite Element Method (FEM) has been successfully applied to the

problem of computing melt and crystal temperature and concentration distributions, melt

convection and the location of the crystal-melt interface. As an alternative to FEM we present a

Chebyshev collocation (pseudospectral) method suitable for the solution of this class of problem.

Spectral and pseudospectral methods 12-13 involve the representation of the solution as a truncated

series of smooth functions of the independent variables. In contrast to FEM, for which the

solution is approximated locally with expansions of local basis functions, spectral methods

represent the solution as an expansion in global functions. In this sense they may be viewed as an

extension of the separation of variables technique applied to complicated problems 14.

For problems that are characterized either by irregularly shaped domains, or even domains

of unknown shape, it is, in general, neither efficient nor advantageous to try to find special sets of



spectralfunctionsthataretunedtotheparticulargeometryinconsideration(especiallyin thecaseof

solidification,wherethe melt-crystalgeometryis notknowna priori ). Two alternative methods

are mapping and patching 14. Mapping allows an irregular region to be mapped into a regular one

(which facilitates the use of known spectral functions, such as Chebyshev polynomials). For

directional solidification systems (see Fig. I) the melt-crystal boundary and, thus, the melt and

crystal geometries, are unknown. Nevertheless, by specifying the melt-crystal boundary as some

unknown single-valued function, the melt and crystal geometries can be mapped into simple ones

by a smooth transformation. This mapping facilitates the use of Chebyshev polynomials to

approximate the dependent variables in these new domains.

As can be seen from Figs. 1 and 2, heat transfer to and in the ampoule wall must also be

considered. To do this we employ patching by subdividing the system into four domains (crystal,

melt and two ampoule domains), and transform these domains to domains with simple shapes. We

then solve the resulting problems in each domain and solve the full problem in the complicated

domain by applying suitable continuity conditions across any boundaries (real or artificial) between

the domains.

The formulation of the problem is outlined in section 2. The solution method is described in

section 3. Our results are presented in section 4 and discussed in section 5.

2. FORMULATION

The vertical Bridgman-Stockbarger system is depicted in Fig. 1. A cylindrical ampoule

with inner and outer diameters of 2R0 and 2(R0+Rw) contains melt and crystal. To grow the crystal

the ampoule must be translated relative to a prescribed external temperature gradient. The objective

of this model is to describe a steady growth process that, in reality, can be achieved between initial

and terminal transients in sufficiently long ampoules. Toward this end a pseudo-steady state

model 2 is employed that neglects the ends of the ampoule. The remainder of the ampoule is

assumed to occupy a cylindrical computational region of length L. Ampoule translation is then

accounted for by supplying a melt to the top of the computational space at a uniform velocity, and

withdrawing crystal from the bottom at the same velocity. It is thus assumed that there is no lag
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betweenthetranslationrateandthecrystal'sgrowthvelocity.Transportof heatfrom thefurnaceto

theampouleis modelledusingaprescribedfurnacetemperatureprofile.Theheattransferfrom the

furnaceto theouterampoulewall is governedby aheattransfercoefficientBi(z). This is discussed

in moredetail later.Thetopandbottomof theampoulearerespectivelyassignedtemperaturesof

TH andTC (TH > TC).

Thevariablesarecastin dimensionlessform byusingR0,O_L/R0,R00_L, O_L/Ro 2 and

TH - TC, where O_L is the melt's thermal diffusivity, to scale length, velocity, stream function,

vorticity and temperature, respectively. That is,

x = (r,z)=( ?,z')/R0, u = fi R0/O_L, _ =7/R00_L, CO= _R_/0_L, T= _T - Tc_ (1)
TH - Tc

Here r and z represent the radial and axial coordinates, _ is the stream function, co is the vorticity

and u = (u,w) represents velocity with radial and axial components u and w, respectively. A tilde

denotes a dimensional quantity. Melt, crystal and ampoule temperatures will be distinguished by

the suffixes L (melt), S (crystal)and W (ampoule) when necessary. The location of the crystal melt

boundary is given by z=h(r,t) and must be determined. The melt is assumed to be incompressible

and the stream function and vorticity are defined by the velocity components (u,w) as

The governing equations then take the following form

In the melt, 0 <r < 1, 0< z < h(r,z)

30 3________ _u = Pr + - Pr -- + pr2Gr (3)
U-_r + w oz r I Or- r Or 3z _] r2

32_ l O_V o_V
rco = .... ÷ __ (4)

3r 2 r 3r 0z 2'

and
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3T 3T 32 13 32

u-g-r+w-b-Zz-- AT , +3z---7-' (5)

where Pr = V/O_L is the Prandtl number, Gr = [3(TH- Tc)gR03/v 2 is the Grashof number, v is the

melt's viscosity and [3 is the mews thermal expansion coefficient.

In the crystal, 0 < r < 1, h(r) << z < A,

o(Pe_z- z = AT, (6)

and in the ampoule wall, 1 < r < rw, 0< z < A,

.. 3T

o_ Pe_zz = AT, (7)

where or', and or'" are, respectively, the ratios of the melt's thermal diffusivity with the crystal and

ampoule thermal diffusivities, and Pe = VoR0/OtL is the Peclet number and VO is the ampoule

translation rate.

For the temperature the boundary conditions are:

At the melt-crystal interface z= h(r,t)

TL= Ts = TM, (8)

k'VTLn - VTsn=StPe o(n.ez, (9)

where TM represents the dimensionless melting temperature, k" is the ratio of melt and crystal

conductivities, St = AH/(CpsAT) is the Stefan number. The vector n is the unit normal to the

crystal-melt surface and points into the melt. At the outer ampoule wall, r= rw

_ 3__T_T= Bi(z)(T - TF(z)). (10)
3r

The temperatures at z=0 and z=A are constant, i.e.

T(r,0) = 1, T(r,A) = 0,

and the heat flux is continuous across the inner ampoule wall

(11)
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0T(1,z)/ = k,/C3T(l,z) /
lw

(12)

¢3T(1,z) / = k**fc3T(1,z) 1
/----gT-rlw

In (10) Bi(z) is a heat transfer coeffcient and TF(Z) is the furnace temperature profile. The

coefficients k* and k** represent the ratio of the wall conductivity with that of the melt and

ampoule, respectively.

For the stream function the boundary conditions are

gt (0,z)= 0, _(1,z)=- 1 pe, _(0,z)=- 1 r2pe, _(h(r),z) = - 1 r2pe, (13)

and the vorticity is zero at r=0. At the other melt boundaries the boundary conditions for the

vorticity are enforced (iteratively) using previously computed values of the velocity field (the

scheme is explained in section 3.3. The velocity boundary conditions are

u(0, z) = u(l,z)=u(r,0) = u(r,h(r))=0 _/)w(0,z) . w(r,0) = w(1,z)= w(r,h(r))=Pe. (14)
Or '

Note that, at the melt-crystal boundary there are two boundary conditions for the

temperature. In the following section we describe an iterative scheme which distinguishes one of

the temperature boundary conditions and uses it to compute the interface shape iteratively.

o

steps:

SOLUTION METHOD

The solution method is based on a Picard 15 type iteration which consists essentially of four

1. The initial shape of the crystal-melt interface is specified and an independent variable

transformation is applied to the governing equations and boundary conditions in the melt, crystal

an ampoule regions• This specifies the computational domains.

2. The coupled momentum, heat, mass and species equations are then solved using three of the

four boundary conditions on the moving boundary.
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3. Theremainingboundarycondition(or distinguished condition2), in this case equation (8), is

used to compute corrected boundary locations.

4. Steps 2 and 3 are repeated until the distinguished boundary condition is satisfied.

The solution method is implemented using domain decomposition and a preconditioned

generalized conjugate residual method 13,16

3.1 Domain decomposition

The physical region is split into four computational domains, f2i, i=l ..... 4. The domains

correspond to the melt (El), the crystal (E3), and the portions of the ampoule wall adjacent to the

melt (-=-2) and the crystal (-=4), as shown in Fig. 2. The irregularly shaped domains are mapped

onto rectangular regions by

= z - 1"--_ _l, (15)-

= r, rl = h--_l) ' E 2----) £'-22, (16)

z-A -

_=r, 1"1= 2 - h(-r)-- _k' -" 3---_ f_3. (17)

z-A

_--r, n = 2- h(i3Z-A, -= 4---) f24 . (18)

3.2 Spatial discretization

The dependent variables, • are approximated by Chebyshev polynomials 12,13, i.e

N,M

(I) =(:I)NIV! (Xi,YJ) : Z a ijTij(Xi,Yj),
i=0

j=0

(19)

where Tij = TiTj , and the Tk are Chebyshev polynomials of order k. The points (Xi , Yj ) are

related to the coordinates { and 1"1by

= aX + b, rl = cY + d, (20)

where a and b are determined by the transformation of each domain, f2i, to [-1,1]x[-1,1]. The

discrete points (Xi,Yj), i=0, N, j=0,M,are the Gauss-Lobatto collocation points 13. That is,



X i =cosrt ,i=0, 1.....N

X i =cosrt[N ],i=0,1 ..... N,

The spatial derivatives are given by

a_____= ! P_ a_ _ ± a_ a2_ _ i a2_
03g a 03X' 0rl c 03y' _ ac OXOY'

32* 1 32* 32* 1 02*

O_2 a203X2' 31]2 c 23Y 2

where the derivatives with respect to X and Y have the forms

N N

03_ (X, Y) __.3_ (Xi,Yj), _ _ DixP. (Xp, Yj ) = _ D_p • pj,

3X 3X p=0 p=0

(21)

(22)

(23)

(24)

N N

0* (X, Y) _ 03* (Xi,Yj), _ E I)Jq* (xi, Yq )= E _q * iq,

3Y 03Y q = 0 q = 0

N N

Y.(x, Y) 03,1,(x ,Yj), i.= Dxx*(Xp, YJ) = E DixP* PJ '
03X 2 03X 2 p = 0 p = 0

(25)

(26)

M M

02. (X, Y) _ 02*NrM (xi,gj), - E Dyiqy* (Xi, yq ) = E Dyyiq. iq,

03y2 03y2 q = 0 q = 0

N,M N,M

0320 (Xi, Yj ) = E DixPDJyq* (Xp, Yq )= E DixPDIyq* pq,

03XY p=o p=O
q=0 q=0

(27)

(28)

where the expressions for Dx, Dy, Dxx, Dyy and Dxy are given explicitly by Ouazzani 17.

3.3 Pseudo-unsteady discretization

The governing equations now have the form

(A (i) - A(i)')_ (i) = S (i), i = 1,6 (29)

where the A(i), A(i), s(i) and q_(i) are given in the Appendix B.

pseoudo- unsteady iterative scheme, equation (29) is rewritten as

To solve these equations using a
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__._____(i) _ A(i)_ (i) ,
+A(i))_) (i) s(i)+ i = 1,6

The left-hand side of (30) is written in discrete form as

(_--_+ A )_ =(A + (yI_ n+l
oN

(30)

- (_(1)n, (31)

where the index in parentheses has been omitted for clarity and the superscript denotes the pseudo-

time or iterative step number. Note that, cy(i) = 1/At(i) for i= 1-6 and that the time step size, A,:(i), is

generally different for each of the equations.

The problem can now be expressed as

H t_n+l + (yl_ n+l = F(0,h) n,
sp-_ (32)

where

lisp= A-A, and F= S+6_)n, (33)

and Hsp is obtained from the expressions in Appendix B using the Chebyshev derivatives (24)-

(28) and equation (23). A superscript n denotes a quantity evaluated at the nth iterative step (note

that the indices in parethenses have been omitted for clarity).

3.4 Vorticity boundary condition

To solve the vorticity-stream function equations we adopted the following procedure which

is simply an extension, for Chebyshev approximations, of an approach described by Peyret 12. The

velocity field is calculated from the stream function obtained from the previous iteration. The

vorticity at the boundary which corresponds to this velocity field is then found from

_n+l =(_ Ow/n'_rr] (34)

and the value of the vorticity to be applied at the boundary, O)n+i , is given by

m.+l =_.+I + (I - 7_ _. (35)

Here y(O < y< 1) is a relaxation parameter.
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3.5 Preconditioned generalized conjugate residual method

The operator Hsp is represented by a full matrix of order (N+l)2 x (M+I) 2 and is not

symmetric. In order to solve the system of equations and boundary conditions represented by (32)

and (A. 11)-(A. 19), each of the spectral operators Hsp for each of the domains _i, i-- 1,4 and the

conditions on shared domain boundaries _i _ _2i, i_j, i,j--1,4 are combined and approximated by a

4

single finite difference operator Hfd. This is defined over the entire domain if2 =CK2i. The
i=l

following iterative procedure which consisits of inner and outer loops is then adopted:

Outer loop: First an initial interface shape h ° is assumed

Inner loop: The residual R is then initialized by

R ° = Hsp_ - F,
(36)

where • represents the _(i). Then we solve

H_d® ° = R °, (37)

where H* = H + _I. Then we set

pO = (90, (38)

and calculate

(Rm,HspP m)

0%+ 1 = (Hsppm, Hsppm) "

The variables _ are then updated from

¢_m+l = (i)m + _m+tprn,

(39)

(40)

and the problem

H_dOm+l = Rrn+ 1,
(41)

is solved for ®. P is then updated using
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pm+l=om + _ _n+lpj,
j=o (42)

where

_jn+l= (]-Isp(Dm+l'Hsp laj) (43)

(H,y,HspP3)

The procedure is continued until ]R ] < e.

The preconditioned problem is given by equations (37) and (41). The finite difference

operator H*fd is approximated by incomplete LU decomposition. The solution for ® is obtained

by forward and backward substitution. The subsequent approximations to • - (Ts,TL,O M ) are

then obtained from (40). At this point we note that while we used a nine-diagonal matrix for the

second-order central finite difference operator for the solution of the temperature field, a seven

diagonal operator was used for the solution of the stream-function and vorticity as it appeared to

lead to more rapid convergence. This means that the cross-derivative terms were evaluated at the

previous time step and were included in F on the right-hand side of (32).

3.6 Interface shape update

This iterative procedure is repeated until the convergence criterion is satsified. The first of

equations (A. 17) is used as a distinguished boundary condition. If it is not satisfied, another outer

loop iteration is performed and the interface shape is relocated using either Newton's method

(30] l
hn+| =hn + _-O-hJi Oi (44)

where Oi is the difference between the temperature at the ith interfacial site and the melting

temperature Tm; or from a searching method

h n+l = h n + o_(Ti - TM). (45)
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Herea is foundby numericalexperiment.We foundthatby usingtheNewtonmethodfor thefirst

few iterationsandthenthesearchingmethodfor subsequentiterations,weachievedbettersuccess

thanwith theNewton method alone.

4. RESULTS

We carried out several tests of the method. The results are shown in Tables 1-3 and in

Figs. 3 and 4. The parameters used are given in Appendix C and correspond to the thermophysical

properties of Gallium-doped Germanium. For the cases examined our results are in good

agreement with the FEM calculations of Adornato and Brown. 2 (see table 2).

Figure 2 shows results for a furnace with a constant temperature gradient and Bi=7.143.

That is,

Tt(z) = 1 - zA -l. (46)

The isotherms are practically flat except at the crystal-melt boundary where the mismatch in thermal

conductivity results in a convex interface. The flow depicted by the streamlines in Fig. 3b-d is a

combination of the ampoule translation (which, if buoyant convection were absent, would appear

as a set of vertical streamlines parallel to the ampoule wall) and buoyant flow caused by radial

gradients in temperature. This results in an downward flow of hot melt near the ampoule wall and a

upflow near the ampoule centerline. Note the increase in flow intensity as the Grashof number is

increased.

Figure 4 shows results for different Grashof numbers for a non-uniform furnace

temperature profile given by

T_(z) =0.5[ 1+ tanh (6-12zA-1)] (47)

together with a position dependent heat transfer function given by

Bi(z) =0.2{211+ tanh (5-2z)] + 1+ tanh (2z-15)}. (48)

Radial temperature gradients arise for two reasons in this problem: The mismatch in thermal

conductivities at the ampoule-melt-crystal junction and the change in heat transfer at the quasi-
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adiabaticzones.Thesezonesarecreatedby thefurnacetemperatureprofile andconditions(47)and

(48). This heatingconfigurationproducestwo counterrotatingcells.Theuppercell increasesin

spatialextent astheGrashofnumberis increased.

Table 1showstheCPUtimes,numberof iterationstakento convergeandcompileroptions

for thecaseshownin Fig. 4b for aCRAY/XMP, an iPSCparallelprocessorandanArdentTitan

computer.

5. DISCUSSION

Chebyshev spectral methods that have been shown to achieve superior accuracy for a wide

range of fluid flow problems defined in regular geometries can be applied to problems involving

unknown free and moving irregular boundaries through a combination of mapping and domain

decomposition. For the directional solidification described here, this was achieved without

incurring excessive CPU times and has been implemented on several different machines to

illustrate the magnitude of the CPU times involved for a typical calculation. Whether there is

ultimately any advantage in using such spectral methods over finite elements will depend on the

specific application. It will most likely depend on the accuracy required and on whether the ability

of the Chebyshev collocation method to achieve better accuracy for a given number of collocation

points (which is recognized for a variety of flows in regular geometries) is retained or degraded

when using domain decomposition.
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Appendix A

Transformed Equations

After the equations and boundary conditions (2) - (14) have been transformed according to

(15)-(18) we obtain the following equations.

0<_<1

0<_<1

For

Orl aq 3_ )=A*T'
(A.1)

where

and

?_ _ lOT 1"1dhaT/,
1 _ff&o 3_&o _coa_4t )= PrA*m - PRO)--+

-_--_ ¢_ ¢2 Prqa_- h dr_-_--]

a_v aev + a_v lawa_2 _Aan--_ Ba_ _ a_, + C = _co,

32 1 3 C_ ,
32 +A 32 + ---+

[2(1 dh]2 1 d2h 1 dh ]A=I+IT! dh/2 ,B=-21"ldh C---rl[ _--_rj -h dr 2 _ dr "h 2 _h- -d-Tr/ h dr '

For l<q<2

o<_<l

where

and

(A.2;

(A.3)

(A.4)

(A.5)

A**T- Pe o_' 1 aT _ 0, (A.6)
hart

32 32 B* 32 + 1 3 , 3A*--
a**=_+ M 2 + c_-

.- _ _(?_2dh/'..= _,__2,d___
(h- A)2 dr/' h - A dr '

[(: ®t2 ,da : d.]C*=(rl-2) 2_ A dr/ h-A dr"- _(h A) dr "

(A.7)

(A.8)
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In the ampoulewall, 1< _ < rw, 0 < rl < 2, whereh(r) is taken to be a constantat eachinner

iteration,we have

02T + 1 _2T + L_)T _peck "1 OT_0, 0<rl< 1, (A.9)

a_2 h2_rl 2 _ c3_ h 0/1

and

O2T + 1 02T + 1 _)T .+peo(._ 1 _)T

a_ 2 (h- A?0rl 2 _ 3_ h- A 0rl
- 0, 1 <1"1 < 2. (A. 10)

The boundary conditions become
3T

3--_= 0,_ = 0, o3 =0 at _ =0,
(A.11)

T = 1, _ =- 1/2_Pe, at 1"1= 0, (A.12)

1
= - _-Pe,

OTL_ .M'_q'W .
1"1dh .____./= K ---zz--.ate= 1 0<1"1 < 1
h dr Orl} O; ' '

(A.13)

h A & 3_' {=l,l<n<2 ,
(A.14)

O--T-T= Bi(rl)(T - TFOq)),
at

_=rw, 0<rl <2

T=0atrl = 2,0 < { < rw

Finally, at the crystal melt interface the boundary conditions are

(A. 15)

(A.16)

k,r)TL
T=TM, _---_-- +

1 3Ts _ StPec_'

h-A Orl l+{__) 2'

(A.17)

and
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_=-2_2pe, atrl = 1,0<{< 1 . (A.18)

In (A.17)we haveusedthefact thatthemeltingtemperatureTM is assumedto beconstantalong

thecrystal melt interface(i.e. _T/_)_= 0). Thevorticity boundaryconditionis givenby equation

(35)with
_1 _u+r I dh_W _w (A.19)

h 0r I h dr _ 25,"

Appendix B

The A(i), A(i) and F(i) referred to in section 3.3 are expressed in terms of the equations

given in Appendix I as follows:

(_(1) = Tn+l

Aft) _ 1 ._ Tn+t °_ n 0Tn+I O_l/n
-_-v _ Orl _ _) (B.1)

A ft) = A* (B.2)

F I) = _(1)Tn (B.3_

_(2) = o)n+l

A(2) =J 75 n 00Jn+t on/Itn 3¢0n+I ¢0n+l 0gt n
_ _ o_ Orl ¢ onrl ) (B.4)

A (2) = A* Pr (B.5)

¢2

t _Tn+l 1"1dh _Tn+l)
(B.61

q_(3) = ign+l

A (3) = 0

A (3) = A* - 2 0

F(3) = _m n+l + _(3)14In ,

_(4) = Twn+l (0 < r I < 1), (_(5) = Twn+l (1 < r I < 2), _b(6) = Ts n+l,

(B .7)

(B.8)

(B.9)
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A (4) = A (5_ = A (6) = 0

A(4) 02 _.1 02 + 1 0 pe .,1_- 0

_2 h2Orl2 _ 0_ h Orl

(B. 1O)

(B.11_

A(5) 02 + 1 02 + 1 _ +Pea': 1 0

_2 (h_ A)2Orl2 _0_ h-Aan

,5 (6) = k**- Pe oC I _
hall '

(B. 12_

(B.13)

F (i) = G(I_ (i) , i = 4,5,6 (B.14)



18

Appendix C

Physical constants, system dimensions and thermophysical properties of Gallium doped
Germanium used in the calculations

Property

Growth velocity

Ampoule length (L)

Constant gradient furnace (Fig. 2)

Heat pipe furnace (Fig. 3)

Outer ampoule radius (Rw)

Constant gradient fumace

Heat pipe furnace

Inner ampoule radius (R0)

Constant gradient furnace

Heat pipe furnace

Kinematic viscosity (v)

Thermal conductivity (ampoule)

Constant gradient furnace

Heat pipe fumace

Thermal conductivity (crystal)

Thermal conductivity (melt)

Density (crystal)

Density (melt)

Heat of solidification (All)

Specific heat (melt)

Specific heat (crystal)

Thermal expansion coefficient

dimension

[cms -1]

[cm]

[cm]

[cm 2 s-I ]

[W K-lcm-l]

Ge:Ga

4x10-4

7.0

7.62

0.7

O.952

0.5

0.762

1.3(10) -3

3.27

0.26

[WK-lcm -l] 0.17

[W K-lcm -1] 0.39

5.5[g cm -3]

[g cm -31

[J 8 -1]

j K-l_-I

j K-l_-I

[K -1]

5.5

460

0.39

0.39

5 (10)- 4
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Fig. 1

Fig. 2

Fig.3

Fig. 4

Figure Captions

Typical Bridgman-Stockbarger set-up

a) The model Bridgman-Stockbarger system and b) the computational domains

Results for results for a furnace with a constant temperature gradient, Bi=7.143 and a Pr =

0.07 melt, a) Gr = 5206, b) Gr = 52,060 c) Gr = 520,600

Results for a non-uniform furnace temperature profile (47) and position dependent heat

transfer coefficient (48) for Pr =0.007 and a) Gr = 7,140, b) Gr = 14280 c) Gr=71,400

d) Gr=- 142,800.
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